Text-Guided Graph Neural Networks for Referring 3D Instance Segmentation
نویسندگان
چکیده
This paper addresses a new task called referring 3D instance segmentation, which aims to segment out the target in scene given query sentence. Previous work on understanding has explored visual grounding with natural language guidance, yet emphasis is mostly constrained images and videos. We propose Text-guided Graph Neural Network (TGNN) for segmentation point clouds. Given sentence cloud of scene, our method learns extract per-point features predicts an offset shift each toward its object center. Based offsets, we cluster points produce fused coordinates candidate objects. The resulting clusters are modeled as nodes learn representations that encompass relation structure object. GNN layers leverage object's relations neighbors generate attention heatmap input expression. Finally, used "guide" aggregation information from neighborhood nodes. Our achieves state-of-the-art performance localization ScanRefer, Nr3D, Sr3D benchmarks, respectively.
منابع مشابه
Gland Instance Segmentation by Deep Multichannel Neural Networks
In this paper, we propose a new image instance segmentation method that segments individual glands (instances) in colon histology images. This is a task called instance segmentation that has recently become increasingly important. The problem is challenging since not only do the glands need to be segmented from the complex background, they are also required to be individually identified. Here w...
متن کاملPixelLink: Detecting Scene Text via Instance Segmentation
Most state-of-the-art scene text detection algorithms are deep learning based methods that depend on bounding box regression and perform at least two kinds of predictions: text/nontext classification and location regression. Regression plays a key role in the acquisition of bounding boxes in these methods, but it is not indispensable because text/non-text prediction can also be considered as a ...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کامل2D-3D Fully Convolutional Neural Networks for Cardiac MR Segmentation
In this paper, we develop a 2D and 3D segmentation pipelines for fully automated cardiac MR image segmentation using Deep Convolutional Neural Networks (CNN). Our models are trained end-to-end from scratch using the ACD Challenge 2017 dataset comprising of 100 studies, each containing Cardiac MR images in End Diastole and End Systole phase. We show that both our segmentation models achieve near...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence
سال: 2021
ISSN: ['2159-5399', '2374-3468']
DOI: https://doi.org/10.1609/aaai.v35i2.16253